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1. Let us consider a thin orthotropic shell of constant thickness h. Jet 

the material of the shell obey the generalized Hooke’s law and let it 

have at each point three planes of elastic symnetry whose principal 

directions coincide with the directions of the coordinate lines a, /3, y. 

The middle surface of the shell is taken as a coordinate surface and it 

is referred to curvilinear orthogonal coordinates a and ,6 coinciding with 

lines of principal curvature of the middle surface. ‘Ihe third coordinate 

line y is rectilinear and represents the distance along the normal from 

the point (a, 8) of the middle surface to the point (a, 8, y) of the 

shell. 

Renouncing the hypothesis on undeformable normals, we introduce the 

following assumptions: 

a> The distance along the normal (y) between two points of the shell 

after deformation remains unchanged; 

b) The shear stresses r and r 
law through the thickness ?f the By 

vary in accordance with a specified 

s ell. 

2. For greater clarity we first present the suggested method for a 

plate Uz, = 0, k, = 0, a, p, y are rectilinear orthogonal coordinates). 

‘Ihe basic assumptions will be written down in the following form: 

a) we assume approximately 

ey = 0 (2.1) 

b) the shear stresses rc,, and rpv are of the form 

500 
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1: .,=fl(r)‘P(oc,B)+X(X++X-)+ x+;x- 

“Pr=fz(r)~(~,B)+~tY++Y-)-t y+;y- 
(2.3 

where X+, . . . . Y- are the components along the axes of a moving tri- 
hedron (along the directions of positive tangents to the lines i3 = const, 
a = const) of the vectors of intensity of surface loads, applied upon 
the outer faces of the plate y = l/2 h and y = - l/2 h, q&z, f3), r,hz, /3) 
are arbitrary functions of coordinates a, /3 to be found; fi(y) are func- 
tions, characterizing the variation laws of shear stresses r 

ay 
andr 

through the thickness, whereby fi<* l/2 h) = 0. 
69 

From the equations of the generalized Hooke's law we have 

From the equations of 
ponents of strain 

the theory of elasticity we have for the com- 

% 
e,=---, 

da 
al4 

ey=--J, 

3 

(2.6) 

c-w 

From relations (2.71, by virtue of (2.11, (2.2) and (2.4) we obtain 
for the displacements of the plate 

ua=U(a, P)-r$+rX,+gX, +J&$D, I24 

UP = 27 (a, p) - 7 $ + ‘$‘I + -& Y, + Jo2 (y) CD, 

Uy=W(%B) (2.9) 

* Here and in the following the usual notation is used for the elastic 

constants [ 1.2 1 . 
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ufa, 61, u&r, @, &, j31 are the tangential 
the middle surface of the shell. 

From the third equation of equilibrium of 
the plate f 2 1 we obtain 

and normal displacements of 

a differential element of 

+~(B4,a~+R44~)-R~,[J,,(1)~+r~+~~]- 
- rr,4 

[ 
Jo2 h) ag 

am”+rag+&a!?]+Z, (2.12) 

B6~[J01(~)-Jo~(-~)]~+Bqq[JO%(~)-J02(-~)i~= 

=-h Rslbx 
i 

ax1 -j- Baa ‘+) - Za (2.13) 

where 

j+E+, .&=2++2- (2.14) 

z+, z- are the normal components of the vectors of intensity of surface 
loads, applied at the external faces of the plate (y = l/2 h, Y = - 1/2h)* 

Equation (2.13) is the third integral equation of equilibrium. From 
(2.3) and (2.4), by virtue of (2.61, 12.81, (2.9) and (2.121, we obtain 

expressions for ua, tr 
B 

and r +, which will not be presented here. 

Substituting the expressions for the stresses uo, C,CJ, r@, rrry and 
rh into the usual formulas for the internal forces and moments we ob- 

tain 
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N I = Brr (Jdh + h&h N2 = 4, (J@, + K) 

where the following notations are introduced: 

(2.22) 

w *Ia h 

J, = 
f 

% h 

JOI (7) a’r, Js = s 7Jor (7) d73 Jc, = s h(r) d7 
-% h -Vr h ---‘It h 

% h 
J 2= s 

% h ‘I, h 

Jo2 (7) d7, J4 = s 7Jo2 (7) d7, Js = s f2 (71 d7 (2.23) 
Jh h -‘h h -$/a h 

'Ihe equations of e~ilibri~ of an element of the shell are of the 
form 

aT1 as aa+@-= - %X2r 

aa+@- l’ 
aM1 aH =N aM, an w+K=N2, a$+$=-22 

(2.24) 

Substituting the values of the internal forces and moments from 
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3. The case when X * = 0 and Yf = 0 is of considerable practical 

interest, that is, the case when the plate is subjected only to normal 

loading Z * . In this case assuming also that [ 3 1 

fi (7) = $ (a h2 - 7”) (3.1) 

Equations (2.25)-(2.29) take on the form 

L,, (Cik) U + L,, (C,l,) u = hAl a$ , (3.2) 

‘Ihen the relevant quantities are 

T, = C1, i&- -I_ C,, $ - hA,Z,, 

T, = C,, G --;- C,, g - hA,Z,, 
s Z c,, (g _I- g) (3.6) 

4. In the case of a shallow orthotropic shell we assume approximately 
that the internal geometry of the middle surface of the shell of non- 

vanishing Gaussian curvature does not differ from the Euclidian geometry 

on the plane,that is, for a suitably chosen absolute system of coordi- 
nates the coefficients of the first quadratic form are [ 2,5 1 

A = 1: B=l (4.1) 

With the same degree of accuracy we assume that the principal curva- 

tures of the middle surface behave as constant quantities 

Ii1 = COllSt, IL? = const (4.2) 
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The theory of very shallow shells taking into account the effect of 

transverse shear and normal stresses o,,, will be constructed on the basis 
of assuqtions introduced in Section 1, which will be written down in 

the following form: 

a) we assune approximately 
e, = 0 

b) the shear stresses are of the form [ 3,4 1 

(4.3) 

?ty = $ ($- h2 - 7”) ‘p (a, P), vdy = f ($ h2 - r2) 9 (a, B) (4.4) 

where, as before, 4 = &a, B) and yS = @a, /3> are arbitrary unknown func- 

tions of the coordinates a /3. 

For the sake of simplicity it is assumed here that the shell is sub- 

jected only to a normal loading 2 = .Z+ and that the shear stresses ray 

andr 

& 

vary through the thickness of the shell, following the parabolic 

law .l). 

From the theory of elasticity the components of strain are 

% 
ep = a~ + k2uy, 

e (4.5) 

Here, and in the following, quantities of the order h ki will be 

neglected as conpared to unity on the basis of pronounced shallowness of 

the thin shell considered; this will be done whereever it is obvious. 

The shell is assuned to be thin but the thickness h is still a finite 

quantity. 

Taking (4.4) into account, the generalized Hooke’s law, which in the 

case of the shell considered is of the form (2.3) and (2.41, the dis- 

placements of any point of the shell in accordance with (4.5) will be 

where u = u(a, /3), u = u(a, /3>, to = da, /tl) are the tangential and normal 

displacements of the corresponding point of the middle surface of the 

shell. From (4.61, substituting the values of ua, 
“P Y 

into (4.5) and 

further into (2.3) and (2.41, we obtain the following expressions for 

the stresses 
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Substituting the relations for the stresses us, us, rs,, and rh into 
the third differential equation of equilibriun 12 1 ) expressed in terms 
of curvilinear coordinates, and integrating with respect to y, taking 
into account that u r=Z=Z+ fory= 1/2handuy=Ofory=- l/2h, 
with the accuracy wxthin the theory of very shallow shells, we obtain 
for the stress cy 

(4.10) 

Substituting the expressions for the stresses uo, ~6, rd , ray, rpy 
into the usual formulas for the intexnal forces and moments we obtain 

where 
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The equations of equilibrium of an element of the shell are of the 

form 

Substituting expressions (4.11) to (4.16) into Equations (4.191, we 

obtain a system of differential equations of very shallow shells: 

~2, (Cik) ZJ + ~5, (cik) 21 $ (klC11 + k&d g - (4.20) 

- A, [ (k&1 + k&z) 2 + (k,& + kAJ a$] = AI +$ 

&a (cik) V + 4s (Cik) U f (&Czz $_ k,Cd ‘$ - (4.21) 

- As (kzh + kA) ag3 I asw + (k&1 + k&J &&] = &. + ;+ 

(k&u + k&z) aa au + (k&z + kJ& + (k&l +2k1k&,+k,2Czz) w- 

--~(~+~)--(k,A,+k,A,)[(k,D1,+k2D,,)~i- (4.22) 

t (k&t2 + kA,) f$] = 2 [ I+ ; (kA + k,Ad] 

J& (Did W - g [GA, PilO Y f a&2 (Dik) $1 i- g Y -i- 

+ Al [(k,D,, + k,D,,) $ + (k2D22 + kJ42) & + (4.23) 

+ (h2D,, + 2klk,&, + kz2D,,) 2 - & (;$ + &$)I = 0 _I 

&s (Dik) UJ - g [Q&22 (Dik) $ d- ax&2 (Did (PI f $ $ + 

+ A2 [(k,D22 + kA2) ‘+ + P241 + W&2) & + (4.24) 

+ (k12D,1 4 2klk,b + kz2&) $f - &(‘$t + $$)I = 0 

Equations (4.20) to (4.24) constitute a complete system of five 

differential equations with respect to five unknown functions u, V, w, 

$8 1cI* 

'lhe basic equations of the theory of very shallow shells may be re- 

presented also in the present formulation in the form of the mixed method 
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f 2, 5, 6 I. 

The equation of compatibility of strain of the middle surface of the 
shell is of the form 

(4.25) 

Examining Formulas (4.11) to (4.151, it is easy to see that the factor 

of the stiffness C,, is the relative elongation of the middle surface c1 of 

c is the relative elongation f2, and of C,, is the shear of the middle 
stfface o; further, the factor of the stiffness D,, is the parameter 
characterizing the change of curvature of the middle surface K~, and 
finally, D,, is the change of curvature K~. 

Taking this into account, Fquation (4.25) may be represented in the 
form 

Let us introduce the stress function F= F(a, 61, such that 

Tr&$, T,E8$, SV.$& (4.27) 

Then the first two equations of equilibrium (4.19) are satisfied 
identically and from the remaining three equations (4.19) and the equa- 
tion of compatibility (4.261, by virtue of (4.14)-(4.16) and (4.27), we 
obtain a complete set of differential equations: 

(4.28) 
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where 

v r=k2-$ik,T$ 

LZ(c~3r;c~~+c~~+(~-2~)~ (4.32) 

Thus, the problem of a very shallow shell in the form of the mixed 
method has been reduced to a system of four differential equations with 
respect to four wkwwn functions F, IB, 9, 6 

‘he pertinent values of the problem may be detezrnined with the aid of 
Formulas (4.6)-(4.16). The tangential displacements (u, v) which enter 
into the indicated formulas may be found from the equations 

au cm Bar &a a*F - -o.-.-~-_--_--_k,w +(A+ A,%), 
aG- - a afP 12 3a’ 

(4.33) 

x t $2 + (Kodak + k&) $ i- (kzbz + kJU $1 

av &I aaF Cm 3=p _-__-- 
ZijF- Q 3aS ~2 aB2 

-k2w+(A2-+Al~)n (4.34) 

x 
[ 
$2 + (kzD22 i- Wz2) j$ + (Wn + k2D12) $i] 

5. Let us consider two exeapfes as an illustration. Without loss of 
generality in the deductions and in the cslculsting procedure we consider 
examples of a transversely isotropic? plate and shell, assuming that at 
each point of the plate (or shell) the plane of isotropy is parallel to 
the middle plane (or surface) of the plate (or shell). The following re- 
lations are valid for the elastic oonetants of the material of the Plate 
(or shell) [ 1 1 : 

Bn = BBS= Bra + 2Bm = 
E 

$-va = BO, &a = vE” 

Bm= 
l--VP* 
-AI 

l+vBc‘ 
2 

Brz + %e = 2 (5.f) 

BSS = B,, = C’, 
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where B is the modulus of elasticity in directions in the plane of 
tropy, B’. is the modulus of elasticity in directions perpendicular 
the middle surface, v is Poisson’s ratio in the plane of isotropy, 

511 

iso- 
to 
v’. is 

Poisson’s ratio characterizing the shortening in the plane of isotropy 
accompanying extension in the y direction, c’ is the shear modulus 
characterizing the distortion of angles between directions in the plane 
of isotropy and the direction y. 

Example f. Let a rectangular plate (a x b) be simply supported along 
the total contour, and be subjected to a loading which is distributed on 
the surface of the plate in accordance with the law 

Z+=Z=qsinXa-sins+, Z-=0 (5.2)~ 
4 

where q is the intensity of loading at the center of the plate (a = l/2 a, 

p = l/2 b). 

Assuming [ 3 1 

zB p=BcosC?!!sinT. +=Csin-.?Zcos_, =B 
a b 

W=AsinlCQsin$ 
a 

we satisfy the conditions of simple support and from the system of 
tions (3.31-(3.5) and by virtue of (5.21, (5.3) for the deflection 
center of the plate we obtain 

(5.3) 

equa- 
of the 

where 

is the deflection of the center of the plate determined with the aid of 
the classical theory of plates, that is, with the aid of a theory which 
is based on the hypothesis of the undeformable normals. 

Examining Formula (5.4) it is easy to recognize that for certain 
values of the ratios E”/cL’, E”/B*S h/a the normal displacements, cal- 
culated on the basis of the classical theory of plates, may differ con- 
siderably from the corresponding displacements, calculated on the basis 
of the theory advanced here. 

Indeed. the classical theory of anisotropic plates, containing an 
error of the order h2/a2 as compared to unity, as could he expected, is 
completely indifferent to ratios of the type B&B,,, BiL/B,,, Bit/B,3 

which appear in more rigorous theories of anisotropic plates with a 
numerical coefficient and the factor h2/a2 and may have considerably 
larger numerical values. 
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The theory advanced here for certain boundary conditions and for 
certain lO8diRgS nay also be used for the analysis of thick plates. For 
example, in the case of a thick isotropic square plate (h/a = l/3, 
Y = 0.3, a = b), when the plate is subjected to a loading which on the 
surface of the plate (Y = l/2 h) is distributed in accordance with the 
law (5.2). we have the following values for the deflection of the center 
of the plate: 

Exact theory f. 7 I P~~~~~~d Theory C 8 I Theory [3 ] C~~~~~~al 

W(E/qh) = 3.49 3.50 3.56 3.69 2.27 

It is seen that even for such a thick plate (h/a = l/3) the theory 
advanced here yields an insignificant error (of the order 0.3%). The 
error of the theory of isotropic plates of medium thickness 18 1 reaches 
2%, and of the approximate theory [3 1, which does not take into account 
the influence of normal stress o,, reaches 6%. The error of the classical 
theory, however, is equal to 35%. 

The calculations indicate that the theory presented also yields good 
results in the analysis of thick plates. However, it may not be consider- 
ed a theory of thick plates or plates of medium thickness without quali- 
fication: for indicated plates, difficulties will arise in connection 
with boundary conditions t3.9 f . 

Finally, let ns indicate that the correction introduced into the 
classical theory, due to the effect of transverse shear, is more signi- 
ficant than the correction due to the effect of normal stress uY. For 
example, in the problem of the thick plate considered above, the correc- 
tion due to the effect of uY is of the order of 5%, while the correction 
due to the effect of transverse shear reaches 30%. Numerous calculations, 
carried out for actual anisotropic plates, confirm the discussions ex- 
pressed above. In this connection we assume that in the analysis of thin 
anisotropic plates (and shells) all those somewhat illogical theories are 
applicable in which phenomena associated with the stress o 
taken into account on purpose. 

Y 
are not 

Exarple 2. Let a very shallow, transversely isotropic, rectangular 
(in plan form) shell be simply supported along its contour and let it be 
subjected to a normally applied loading which is distributed in accord- 
ance to the law (5.2) on the surface of the shell CY = l/2 h). In this 
example we shall neglect the influence of the stress u 

Y’ 
Thus, it will 

be sufficient to assume in all equations and formulas AI = Ax = 0. 

Letting [ 4 1 
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p=Beos$sin+, +=Csinx?Ecos -.._ XB 
a b 

u=McosZsinq, o= Nsin?Ca cos z.F_ 
a a b 

na w = A sin - sin _ AB 
a b 

(5.5) 

the conditions of free support will be satisfied and from the system of 
equations (4..20)-(4.24) we obtain, by virtue of (5.2) and (5.51, for the 
normal displacement of the center of the shell (a = a/2, /?J = b/2) 

w =wo[l+h’] (5.6) 

where 

uO is the normal displacement of the center of the shell, determined with 
the aid of the theory which ie based on the hypothesis of undeformable 
normals. 

E&mining Formulas (5.6) and (5.71, we note that with an increase in 
the rise of the shell (that is, with an increase of the ratios a/R,, 

a&, the errorcommittedin adopting the hypothesis of undeformahle 
normals is decreased. This error reaches its maximum value in the case 
of a plate (k, =I l/R1 = 0, k, = l/R2 = 0). Here the reason for this is 
due to the fact that as the rise of the shell increases the influence of 

flexural parameters upon the state of stress of the shell decreases, 

which means a decrease in the influence of shear forces N, and ff2, that 

is, of shear stresses r and r ti which produce the influence of trans- 
verse shear. Generally Speaking, the smaller the influence of flexural 

phenomena upon the state of stress of the shell the smaller the “correc- 

tionl of the classical theory of shells due to phenomena of transverse 

shear. 

1. Lekhnitskii, S.G., Anizotropnye plastinki (Anisotropic plates). 

Moscow, 1957. 

2. V18SOV, v. z., Obshchaia tcoriia obolochek (General Theory of Shells). 

Gostekhixdat. 1949. 



514 S.A. Aabartrumian 

3. Aabartsumian. 6. A., I( teorii izgiba anizotropnyhh plastinok (On the 
bending theory of anisotropic plates). Izv. A&ad. Nauk SSSR, OTN, 

No. 5, 1958. 

4. Ambartsumian, 6. A., K obshchei teorii anizotropnykh obolochek (On 
the general theory of anisotropic shells). PMM Vol. 22, No. 2. 

1958. 

5. Gol’ denveizer, A. L., Tcoriia aprueikh tonkikh obolochrk (Theory of 

Elartic Thin Shallr). Gostekhizdat, 1953. 

8. Ambartaumian, 8. A. and Peshtmaldzhian, D. V., R teorii ortotropnykh 

obolochek 1 plastinok (On the theory of orthotropic shells and 
plates). 120. Akad. Nauk Arm. SSR leer. fiz.-mat. nauk) Vol. 12, 

No. 1, 19Si). 

7. Vlasov. B. F. , Ob odnom alnchae izgiba priamougol’noi tolstoi plity 
(On a case of bending of a rectangular thick plate). Vcstnik YGfl 
No. 2. 1957. 

8. Yushtari. Kh. Y., Teoriia isgiba plit srednei tolshchiny (Theory of 
bending of plates of medium thickness). Isu. Akad. Nauk SSSR, OTN, 

Yekhanika i maahinoitrocnic NO. 2. 1959. 

9. Gal’ denveizer, A. L., K teorii isgiba plastin Raisnera (On Reissner’s 

theory of plate bending). Irv. Akad. Nauk,SSSR, 07IV NO. 4, 1958. 

Tranrlatcd by G.H. 


